If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3a^2+24a+4=0
a = 3; b = 24; c = +4;
Δ = b2-4ac
Δ = 242-4·3·4
Δ = 528
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{528}=\sqrt{16*33}=\sqrt{16}*\sqrt{33}=4\sqrt{33}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-4\sqrt{33}}{2*3}=\frac{-24-4\sqrt{33}}{6} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+4\sqrt{33}}{2*3}=\frac{-24+4\sqrt{33}}{6} $
| A+6a=15(3/4) | | -6=m/9(-6) | | -2(x+4)=7(x-4) | | 8y+36=14y+72 | | 9/p=-3 | | -2(4g-3)=20 | | -6.5t+15=-9.7t+438 | | -5(x-3)-2x=46(x+1) | | 32.49=6g+3.51 | | 6p+36=7p-7(p-8) | | 10x=5.5x+34.60 | | 2(9x-7)+10=3(5x+4)-1 | | 6-2(x-6)=3x=4 | | 4/3(y+6)=49-y/3 | | x+4/10=7/5+x-8/4 | | 4x+5=4x+6+x | | 7x+5-x+6=56 | | 5x+7=11x-5 | | 9+2(2u-1)=-3(3u-1) | | 5(2x-1)-2(3x+3)=6+7(x+4) | | 4q+36=-196q+(-588) | | 2x-1=9-x | | 7x-14=2x+16 | | 13/20=x/60 | | 60-1x-9=17 | | 1=0.2-0.7x-14 | | -6=(m/9)-6 | | 6(n+7)-2(1+4n)=34 | | 3x+13=7x-28 | | 0.65-0.89=x | | 70+65x=460 | | -6=m/9-6 |